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Abstract. It is shown that the coupling between capillary waves and dilatational fluctuations
at a liquid surface can lead to the appearance of mixed modes. Calculations are presented for
various cases, and related to recent experiments.

1. Introduction

Although waves on liquid surfaces have been studied for many years [1, 2], theoretical
studies continue in various directions, including the stability [3, 4] and non-linear effects
of surface waves [5]. In general liquid interfaces sustain several modes of oscillation, of
which two are of present concern: transverse or capillary and longitudinal or dilatational.
These modes are coupled [6, 7]. However, in many recent studies this coupling has been
neglected. The discovery in the framework of linear theory of certain hitherto unsuspected
effects of this coupling [8, 9] suggests that this may seriously undermine such studies. We
discuss these recently discovered effects and their experimental verification.

2. Background

Interfaces between two fluids supporting molecular films of amphiphiles may support many
modes of fluctuation, both hydrodynamic [10, 6] and molecular [11]. However, our primary
concern is with two hydrodynamic modes: capillary waves, governed by the interfacial
tension (γ ), and dilatational modes, governed by the dilatational modulus (ε) of the interface
(=−dγ /d ln0s, 0s being the surface excess of amphiphile).

The fluctuation of the interface from the equilibrium position due to a disturbance of
wave numberq is ζ = ζ0 exp i(qx + ωt), the frequencyω being complex (=ω0 + i0). For
the general case of a liquid–liquid interface [6, 7] the boundary conditions for the linearized
Navier–Stokes equation for the interfacial waves can be written in the following form [6],
which makes the coupling of the horizontal and vertical motions particularly apparent:

azzvz + azxvx/i = 0 (1)

axzvz + axxvx/i = 0 (2)

where

axx = εq2/ω + i
[
η(q + m) + η′(q + m′)

]
(3)

azz = γ q2/ω + g(ρ − ρ ′)/ω − ω(ρ + ρ ′)/q + i
[
η(q + m) + η′(q + m′)

]
(4)

azx = η(q − m) − η′(q − m′). (5)
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Here

m =
√

q2 + iωρ

η
Re(m) > 0 (6)

andη andρ are the liquid viscosity and density (primed quantities for the upper fluid).
Equating the determinant of the coefficients of equations (1) and (2) to zero yields

the dispersion equation for the interfacial waves. This has two roots, corresponding to
capillary and dilatational waves respectively [6, 7]. Their behaviour may conveniently be
approximated by

ωC =
√

γ q3/ρ + i
2ηq2

ρ
(7)

for the capillary waves [1] and

ωD = 1

2
(
√

3 + i)(ε2q4/ηρ)1/3 (8)

for the dilatational waves [6]. The coupling between the modes modifies these approximate
dispersion behaviours [6, 7]. The major effect is a resonance between the two modes,
occurring when the frequencies of the modes coincide (atε0/γ0 ≈ 0.16), at which the
capillary wave damping rises to roughly twice its value for a clean surface.

Dissipative effects within the surface can be incorporated into the formalism by
expanding the surface moduli as linear response functions [10]:

γ = γ0 + iωγ ′ (9)

ε = ε0 + iωε′ (10)

where γ0 and ε0 are now the tension and elastic modulus, while the primed quantities
represent surface viscosities. The dissipative effects represented by these surface viscosities
influence the corresponding surface modes: the transverse shear surface viscosityγ ′

increases the dampings of the capillary waves compared to that due to the viscosity of
the ambient liquid, while the dilatational surface viscosityε′ increases the damping of the
dilatational modes.

3. Results and discussion

It is well known that coupled oscillators may show physically interesting behaviour, in
particular mode mixing, in which behaviour characteristic of one mode changes smoothly
to that characteristic of the other as some control parameter is varied [12]. At intermediate
values of the control parameter we have mixed modes: the excitations cannot be definitively
ascribed to one or other of the original modes. Such mode mixing is characterized by
splitting of the frequencies of the modes.

In the present context, we first recall that the surface modes constitutelossyoscillators:
both are damped by the fluid viscosity and perhaps by dissipation within the surface film.
Manifest mode mixing derives from the free exchange of energy between the coupled
oscillators. However, in the lossy case, if the rates of damping differ energy will flow
from the less damped vibrator to the more damped one, essentially being lost to the system.
Clearly this increases the rate of loss of energy of the less damped oscillator, and reduces
that of the more damped one (due to energy flow from the former). The net effect is that
the dampings of the two vibrators are brought together until ultimately they are the same
and splitting of the real frequencies occurs [12]. We now consider the implications of this
for our surface waves.
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Figure 1. The q-dependence ofωC and ωD, found by solving the dispersion equation for
γ0 = 70 mN m−1, ε0 = 12 mN m−1, other properties being as for water. Full lines represent
the capillary wave behaviour, dashed lines that of the dilatational waves.

The dispersion behaviours of the two surface modes are shown in figure 1 for a typical
liquid surface. Typical capillary and dilatational behaviours as suggested by equations (7)
and (8) are clearly apparent. Slight deviations from the expected power-law dependences,
particularly apparent in the damping, arise from approach to the resonance between the
modes. The two damping values are not equal, so manifest mode mixing cannot immediately
occur. In particular the dilatational wave damping exceeds that of the capillary waves, as
is usually the case. Thus to cause the appearance of mode mixing,0C must be increased
or 0D must be decreased.

Now, as stated above,γ ′ increases the capillary wave damping, causing the0 values
of the two modes to converge, so the coupling has greater effect. Asγ ′ increases above a
critical value this can lead to manifest mode mixing [8].

This is more readily apparent when the standard dispersion graph (as figure 1) is replotted
with frequencies normalized by the approximate capillary wave frequency and0 values
normalized by the approximate capillary wave damping (equation (7)). When replotted thus,
capillary wave-like behaviour should correspond to normalizedω0 and 0 of order unity,
and be roughly independent ofq, whereas dilatational wave-like behaviour will vary with
q and differ significantly from unity in magnitude, due to the inappropriate normalization.

Figure 2 shows the normalized surface wave dispersion behaviour for a value ofγ ′

sufficient to induce mode mixing. Note the change in behaviour of both frequencies and
damping constants atq just above 1000 cm−1. That normalizedω0 which at low q is
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Figure 2. Manifest mode mixing of the surface waves induced byγ ′ above a critical value.
Surface properties used in computation wereγ0 = 65 mN m−1, γ ′ = 4 × 10−5 mN s m−1,
ε0 = 15 mN m−1. See the text for discussion.

constant and about unity suddenly changes to follow the downward trend shown at lower
q by the other frequency, and vice versa. The tendency of one0 value to increase with
q (reflecting the effect ofγ ′ on the capillary mode) similarly swaps from one mode to the
other. Clearly the full line represents behaviour which is capillary wave-like at lowq and
dilatational wave-like at highq, the dashed line just being the opposite. Thus increasing
the capillary wave damping via the transverse shear surface viscosityγ ′ can indeed lead to
mode mixing of the surface waves.

Can changes affecting the dilatational wave damping similarly lead to mode mixing?ε′

increasesthe 0D, rendering mode mixing less, rather than more, feasible. However, if, as
suggested by certain recent theories [3, 4], certain processes within the system reduce the
dilatational wave damping then mixing might occur. Unfortunately not all of the parameters
of these theories are well established, making it difficult to do realistic computations of the
surface wave dispersion. However, we can approximate the effects of a reduction in0D

by invoking ε′ < 0 in the standard dispersion equation [9]. The two0 values will then
converge, causing the coupling to have greater effect. Again manifest mode mixing can be
induced if |ε′| exceeds a critical value [9].

Figure 3 shows the normalized frequency and damping values for the two modes. Before
discussing the evident mixing, we first remark that the negativeε′ decreases the dilatational
wave damping by an amount which rises withq until eventually0D goes negative: the
dilatational waves have become unstable (ωD becomes unrealistic at a somewhat largerq).
Clearly the linear theory sketched above must eventually break down, but it suffices to
indicate the occurrence of mode mixing. Returning to the figure, we see that the initially
capillary wave-like damping, varying gently withq and of magnitude about 5, crosses over
to dilatational wave-like behaviour, turning to go negative forq & 1500 cm−1. Similarly,
it is theq-dependent dilatational wave-like frequency which recovers and continues beyond
this q-value with magnitude about unity, as expected for capillary waves.

The physical parameters used in these computations were chosen to illustrate the effects,
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Figure 3. Mode mixing of the surface waves induced by a negativeε′ of magnitude above a
critical value. Surface properties used in computation wereγ0 = 65 mN m−1, ε0 = 10 mN m−1,
ε′ = −2 × 10−5 mN s m−1. See the text for discussion.

rather than for specific applicability to any experiment. Such computations show that the
coupling between the capillary and dilatational waves can have results which have not
hitherto been appreciated. There are clear differences between the two routes to mode
mixing.

In experiments on solutions of various ionic surfactants the measured capillary wave
behaviour diverges from normal expectation [13, 14]. For example, for aqueous solutions of
the cationic surfactant cetyltrimethylammonium bromideω0 and0 systematically departed
from theoretical predictions at highq [13]. The effects were largest at about 0.04 mM, for
which a discontinuous increase in0 at q ≈ 1500 cm−1 coincided with a decrease inω0.
Careful comparisons with predictions for the routes to mode mixing clearly showed that the
data were consistent with the route to mixing associated with a reduction in the dilatational
wave damping in these soap solutions, due to processes not incorporated in the standard
theory [6, 7]. Data for other concentrations, while not exhibiting manifest mode mixing,
were consistent with the effects of strong mode coupling due to such a reduction in0D.

4. Conclusions

The coupling of waves on liquid surfaces has been shown to lead to unexpected
consequences, including mode mixing. These effects have been confirmed experimentally.
The discovery of such effects of the coupling emphasizes that it cannot be neglected, as has
often been done in considerations of surface mode stability.
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